

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 17 (2006) 1617–1621

Tetrahedron: Asymmetry

Synthesis and chiral recognition ability of O-ethyl (2-naphthyl)phosphonothioic acid

Yuka Kobayashi, Jin Maeda and Kazuhiko Saigo*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received 8 May 2006; accepted 2 June 2006

Abstract—Enantiopure O-ethyl (2-naphthyl)phosphonothioic acid 1 was designed on the model of O-ethyl phenylphosphonothioic acid, based on the fact that the chiral recognition abilities of enantiopure mandelic acid and cis-1-aminoindan-2-ol were improved upon by replacing their phenyl/phenylene groups with naphthyl/naphthylene groups, respectively. Enantiopure 1 was easily obtained by the enantioseparation of racemic 1, which was easily synthesized from commercially available 2-bromonaphthalene and diethoxyphosphonothioic chloride, with enantiopure 1-phenylethylamine. Enantiopure 1 showed an excellent chiral recognition ability for several 1-arylethylamine derivatives during the diastereomeric salt formation. The effect of the enlarged aromatic part of 1 is discussed on the basis of X-ray crystallographic analyses. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, we have reported the superior chiral recognition ability of O-alkyl phenylphosphonothioic acids during diastereomeric salt formation in the enantioseparations of various types of 1-phenylethylamine derivatives; a systematic study on the chiral recognition abilities of enantiopure O -methyl, O -ethyl, and O -propyl phenylphosphonothioic acids revealed that O-ethyl phenylphosphonothioic acid 2 was the most effective with a wide applicability.^{[1,2](#page-3-0)} X-ray crystallographic studies showed that the excellent chiral recognition ability of 2 was caused by the formation of globular clusters in the less-soluble diastereomeric salts, of which the stacking was highly stabilized by the efficient CH/π interaction between the phenyl group in a cluster and the ethyl group in the neighboring cluster. The formation of the globular clusters in the less-soluble salt always led to excellent chiral recognition with 2, which resulted in >99–91% enantiomeric excesses (ee) for the amines incorporated in the less-soluble salts. These results suggest that the phenyl and O-alkyl groups in 2 play an important role in the realization of the high chiral recognition ability.

On the other hand, the chiral recognition abilities of enantiopure mandelic acid and 1-aminoindan-2-ol have been improved by changing the aromatic parts from the phenyl/phenylene groups to naphthyl/naphthylene groups, respectively $(2-naphthylglycolic acid³ and 1-amino (2-naphthylglycolic acid³ and 1-amino (2-naphthylglycolic acid³ and 1-amino benz[f]indan-2-o1⁴$ $benz[f]indan-2-o1⁴$ $benz[f]indan-2-o1⁴$. The effect of the enlargement of the aromatic parts led to a dramatic improvement with respect to the chiral recognition abilities for p -substituted 1-phenylethylamine derivatives and p-substituted 2-phenylpropanoic acid derivatives with a long molecular length, respectively. Moreover, from a crystallographic point of view, the naphthyl and naphthylene groups commonly provided very effective CH/π interaction sites to stabilize the less-soluble diastereomeric salts.

On the basis of these results, we designed O-ethyl (2 naphthyl)phosphonothioic acid 1, which has a naphthyl group, for more effective CH/π interaction than the phenyl group in the prototype of O-ethyl phenylphosphonothioic acid 2. Herein, we report the synthesis and chiral recognition ability of enantiopure 1 as well as the chiral recognition mechanism based on the X-ray crystallographic analyses of the corresponding less-soluble diastereomeric salts.

^{*} Corresponding author. Tel.: +81 3 5841 7266; fax: +81 3 5802 3348; e-mail: saigo@chiral.t.u-tokyo.ac.jp

^{0957-4166/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.06.002

2. Results and discussion

2.1. Synthesis of enantiopure O-ethyl (2-naphthyl) phosphonothioic acid 1

Racemic O-ethyl (2-naphthyl)phosphonothioic acid 1 was synthesized from commercially available 2-bromonaphthalene and diethoxyphosphonothioic chloride, as shown in Scheme 1. 2-Bromonaphthalene was treated with 1 equiv of n-BuLi in ether and then allowed to react with diethoxyphosphonothioic chloride to give crude O, O' -diethyl (2-naphthyl)phosphonothioate, which was hydrolyzed with 8 M aqueous KOH solution to afford crude racemic 1.^{[5](#page-3-0)} Crude racemic 1 was purified upon crystallizing the salt with dicyclohexylamine from CHCl₃, followed by decomposition of the salt, to give chemically pure racemic 1 (78% total yield based on diethoxyphosphonothioic chloride used). $\frac{5}{3}$ $\frac{5}{3}$ $\frac{5}{3}$

Enantiopure 1 was obtained by the enantioseparation of racemic 1 with enantiopure 1-phenylethylamine (PEA) by stirring in ether. The diastereo-enriched salt of 1 with (R) -PEA was recrystallized once from acetone, and the diastereopure salt thus obtained was decomposed with 2 M aqueous HCl solution to give enantiopure (S_p) -1, the absolute configuration of which was determined on the basis of the X-ray crystallographic analysis of the diastereopure salt, in 77% total yield (based on a half amount of racemic 1 used).^{[6](#page-4-0)} The antipode (Rp) -1 was obtained in 77% total yield by the enantioseparation of (Rp) -enriched 1, recovered from the mother liquor, with (S) -PEA, followed by similar recrystallization and decomposition.^{[6](#page-4-0)}

2.2. Chiral recognition ability of enantiopure O-ethyl (2-naphthyl)phosphonothioic acid 1

The enantioseparation of 1-phenylethylamine derivatives 3 with enantiopure O-ethyl (2-naphthyl)phosphonothioic acid 1 was carried out as follows: the ether solution of a 1-phenylethylamine derivative and 1 equiv of 1 was stirred for more than 4 h at room temperature. The crystalline powder deposited (diastereo-enriched salt) was collected by filtration, washed with hexane, and dried under reduced pressure. The salt was decomposed with 1 M aqueous KOH solution to yield the enantio-enriched amine [\(Table 1\)](#page-2-0). As can be seen from [Table 1](#page-2-0), 1 showed excellent chiral recognition ability in the enantioseparations of p -substituted 1-phenylethylamine derivatives (entries 4–8). The ees of the amines incorporated in the diastereo-enriched salts were in a high range of 86–99%, which are only a little less than those achieved with O-ethyl phenylphosphonothioic acid 2 $(96–>99\%)$, ^{[1,2](#page-3-0)} although the yields were rather low due to the high solubility of the diastereomeric salts in ether, making control of the amount of ether difficult; subsequently, the efficiencies (the yield \times the enantiomeric excess) were lowered considerably. It is noteworthy that the enantioseparations of m-methyl and p-nitro substituted amines with 1 (entries 3 and 8) were highly improved, compared with those with 2 (not crystallized and 16% ee/0.13 efficiency, respectively^{1,2}). These results indicate that 1 and 2 are complementary for the enantioseparation of 1-phenylethylamine derivatives.

There were two crystal shapes for the less-soluble diastereomeric salts of 3 with 1; we observed a high correlation between the crystal shapes and the results of the enantioseparations. In the cases of the prism-type crystals (entries 5–7) high chiral recognitions were achieved (91–99% ee), while the chiral recognition ability varied in the range of 56–93% ee in the cases of needle-type crystals (entries 1, 3, 4 and 8). Since a similar correlation has been found in the enantioseparation with enantiopure O-alkyl phenylphosphonothioic acids, $1,2$ the correlation was considered to be a general phenomenon in the enantioseparation with enantiopure arylphosphonothioic acids.

2.3. Mechanism of the chiral recognition with enantiopure O-ethyl (2-naphthyl)phosphonothioic acid 1

In the next stage, in order to clarify the chiral recognition mechanism, we carried out an X-ray crystallographic analysis for one of the prism-type crystals (entry 6). [Figure 1](#page-2-0) shows the crystal structure of the less-soluble diastereomeric salt of (S)-1-(4-chlorophenyl)ethylamine 3f with O-ethyl (Rp) -(2-naphthyl)phosphonothioic acid (Rp) -1.^{[7](#page-4-0)} A molecular aggregate, which consists of four (Rp) -1 molecules and four (S)-3f molecules, was formed with a closed hydrogen-bonding network, which is almost the same as

Table 1. Enantioseparation of 1-phenylethylamine derivatives with enantiopure 1

			NH ₂	$3a: R = H$ $3b: R = o-Me$ 3c: $R = m$ -Me 3d: $R = p$ -Me	3e: $R = p - F$ 3f: $R = p - C1$ 3g : $R = p - Br$ 3h: R = p -NO ₂		
			3				
Entry	Amine	Amount of ether ^a (mL)	Yield \mathbf{b} (%)	ee $^{\rm c}$ (%)	Absolute configuration ^d	Efficiency ^e	Crystal shape ^r
1 ^g	3a	4.0	100	56	\boldsymbol{R}	0.56	Needle
$2^{\rm h}$	3 _b	0.7	n.c. ¹				
3 ^h	3c	0.8	61	93	S	0.56	Needle
4 ^h	3d	4.0	63	86	S	0.54	Needle
5 ^h	3e	1.0	42	91	S	0.38	Prism
6 ^h	3f	0.8	58	99	S	0.57	Prism
\neg h	3 _g	0.8	67	96	S	0.64	Prism
8 ^h	3 _h	0.8	75	90	n.d. ^J	0.68	Needle

^a Amount of the solvent normalized to a 1 mmol-scale.

^b Yield of the crystallized diastereomeric salt based on a half amount of the racemic amine.

^c Enantiomeric excess (ee) of the liberated amine, which was determined by a HPLC analysis.

^d Absolute configuration of the major enantiomer, which was determined by X-ray crystallographic analysis and/or deduced on the basis of the elution order in the HPLC analysis.

^e Efficiency is the product of the yield and the ee.

f Crystal shape of less-soluble salt.

 $\int_{h}^{g} (Sp)-1$ was used. h (*Rp*)-1 was used.

ⁱ Not crystallized.

^j Not determined.

that in the globular cluster formed in the salt of (R) -3f with O-ethyl (Sp) -phenylphosphonothioic acid (Sp) -2.^{[1,2](#page-3-0)} However, the shape of the aggregate of the (Rp) -1 (S) -3f salt is fairly different from that of the globular cluster of the (Sp) -2 (R) -3f salt. The top view of the aggregate of the (Rp) -1(S)-3f salt reveals that the naphthyl group of 1 is located at the outer part of the aggregate. As a result, the $CH(sp^2)/\pi$ interactions between (Rp) -1 molecules and (S)-3f molecules in the aggregate of the (Rp) -1(S)-3f salt is less in number than those in the globular cluster of the (S_p) - $2(R)$ -3f salt, contrary to our expectation. Moreover, the packing of the aggregates is not sufficient, because the naphthyl groups stick out from the aggregates to form a cavity between the aggregates (Fig. 1c); the density of the (Rp) -1(S)-3f salt is smaller than that of the (Sp) -2(R)-3f salt (1.223 and 1.446 g/cm³, respectively). Thus, the (Rp) - $1(S)$ -3f salt has some disadvantages, compared with the (Sp) -2 (R) -3f salt, with regards to effective interaction and close packing. However, (Rp) -1 showed a high chiral recognition ability, when the resultant less-soluble diastereomeric salts were prism-type crystals. These results indicate that the formation of an aggregate/cluster, consisting of four phosphonothioic acid molecules and four 1 phenylethylamine derivative molecules, is very important for achieving efficient chiral recognition.

In order to clarify the chiral recognition mechanism through the formation of needle-type crystals, we tried to

Figure 1. Crystal structure of the less-soluble $(Rp)-1$ (S)-3f salt; (a) side view of the aggregate, (b) top view of the aggregate, and (c) packing mode of the aggregates. The pale blue circles indicate the closed hydrogen-bonding networks. The dotted lines and arrows show hydrogen bonds and CH/ π interactions, respectively. The bond distances are in angstrom.

Figure 2. Crystal structure of the less-soluble (Sp) -1 (R) -3a salt; (a) columnar hydrogen-bonding network and (b) packing mode of the columns with CH/ π interactions. The pale blue circles indicate the closed hydrogen-bonding networks. The dotted lines, black arrow, and green arrow show hydrogen bonds, inter-columnar CH(sp²)/ π interactions, and intra-columnar CH(sp²)/ π interactions, respectively. The bond distances are in angstroms.

prepare single crystals of the less-soluble diastereomeric salts (Sp) -1· (R) -3a, (Sp) -1· (R) -3c, and (Sp) -1· (R) -3h for Xray crystallographic analyses. Among them, the single crystal of the (Sp) -1 (R) -3a salt was solely obtained, and its crystal structure could be solved (Fig. 2).⁸ There exists a columnar hydrogen-bonding network, consisting of the phosphonothioate anions and the ammonium cations, as was observed in the needle-type less-soluble diastereomeric salts with *O*-alkyl phenylphosphonothioic acids.^{1,2} The top view of the column indicates that intra-columnar $CH(sp^2)$ π interaction reinforces the one-dimensional hydrogenbonding column. Furthermore, the packing of the columns is sufficiently stabilized by four kinds of inter-columnar $CH(sp^2)/\pi$ interactions. From a crystallographic point of view, the m- and p-substituted phenylethylamines 3c and 3h would be able to make a similar conformation, because the substituents at the m - and p -positions have no serious influence on the stability of the crystals owing to relatively low occupancy for the spaces around the hydrogen-bonding network and between the columns. This X-ray crystallographic analysis indicates that the enlargement of the aromatic part in O-alkyl arylphosphonothioic acids is favorable for the chiral recognition via the formation of a columnar hydrogen-bonding network, as was found in the chiral recognition with enantiopure 2-naphthylglycolic acid³ and 1-aminobenz[f]indan-2-ol.⁴

3. Conclusion

Enantiopure O-ethyl (2-naphthyl)phosphonothioic acid 1 was prepared from racemic 1, which was synthesized from 2-bromonaphthalene and diethoxyphosphonothioic chloride, through enantioseparation with enantiopure 1-phenylethylamine. Enantiopure 1 showed an excellent chiral recognition ability for racemic 1-phenylethylamine derivatives; the ees were 91–99% in the cases of prism-type lesssoluble diastereomeric salts and were 56–93% in the cases of needle-type less-soluble salts. The X-ray crystallographic analyses revealed that the enlarged aromatic part in 1, compared with that in O-ethyl phenylphosphonothioic acid 2, played a significant role in the chiral recognition via the formation of a columnar hydrogen-bonding network to stabilize the packing of the columns with efficient CH/π interactions, but was not so effective for the stabilization of the aggregates consisting of four (2-naphthyl)phosphonothioic acid molecules and four 1-phenylethylamine derivative molecules.

References

- 1. Kobayashi, Y.; Morisawa, F.; Saigo, K. Org. Lett. 2004, 23, 4227.
- 2. Kobayashi, Y.; Morisawa, F.; Saigo, K. J. Org. Chem. 2005, 71, 606–615.
- 3. Kinbara, K.; Harada, Y.; Saigo, K. J. Chem. Soc., Perkin Trans. 2 2000, 1339.
- 4. Kobayashi, Y.; Kurasawa, T.; Kinbara, K.; Saigo, K. J. Org. Chem. 2004, 69, 7436.
- 5. A typical procedure: To a solution of 2-bromonaphthalene (16.2 g, 78 mmol) in dry ether (120 mL) was added dropwise 1.6 M butyllithium in hexane (49.4 mL, 78 mmol) at -78 °C under an argon atmosphere, and the mixture stirred at 0° C for 20 min. Diethoxyphosphonothioic chloride (9.41 mL, 60 mmol) in dry ether (50 mL) was then added dropwise to the mixture at -78 °C. The reaction mixture was stirred at rt for 1.5 h and then cooled with an ice bath, after which H_2O (30 mL) was slowly added to the mixture. After removal of the solvent under reduced pressure, 1 M aqueous HCl solution (100 mL) was added, and the aqueous layer extracted with ether $(8 \times 80 \text{ mL})$. Then the combined extracts were successively washed with 1 M aqueous HCl solution (100 mL) and brine (100 mL), dried over anhydrous $Na₂SO₄$, filtered, and concentrated under reduced pressure to give crude O,O-diethyl 2-naphthylphosphonothioate. A solution of crude O , O -diethyl 2-naphthylphosphonothioate in a mixture of 8 M aqueous KOH solution (120 mL) and ethanol (120 mL) was refluxed for 12 h. After removal of ethanol under reduced pressure, 12 M aqueous HCl solution (60 mL) was added to the residue. The resultant solution was extracted with CH_2Cl_2 (1 × 200 mL, and then 3×100 mL). The aqueous solution was acidified with 12 M aqueous HCl solution (50 mL) and extracted with dichloromethane $(9 \times 100 \text{ mL})$. The combined extracts were washed with brine (150 mL), dried over anhydrous $Na₂SO₄$, filtered, and concentrated under reduced pressure to give crude

racemic O-ethyl (2-naphthyl)phosphonothioic acid (13.8 g, 55 mmol) as a colorless oil. Crude O-ethyl (2-naphthyl)phosphonothioic acid (13.8 g, 55 mmol) was purified via salt crystallization with dicyclohexylamine (10.0 mL, 55 mmol) from CHCl3 (120 mL). Decomposition of the corresponding salt by 3 M aqueous HCl solution (150 mL), followed by extraction with CH_2Cl_2 (4 × 80 mL) and concentration under reduced pressure, gave chemically pure racemic 1 (11.84 g, 47 mmol) in 78% overall yield (on the basis of diethoxyphosphonothioic chloride used).

6. A typical procedure: To a solution of racemic 1 (9.08 g, 36 mmol) in ether (50 mL) was added (R) -1-phenylethylamine (PEA; 4.36 g, 36 mmol), and the mixture stirred at rt for 4 h. The deposited salt was collected by filtration using a membrane filter (T050A047A, ADVANTEC). The salt was recrystallized once from acetone (90 mL) to afford the diastereopure salt (Sp) -1 (R) -PEA (5.30 g, 14 mmol, 79% based on a half amount of racemic 1 used). To the diastereomeric salt thus obtained was added 1 M aqueous KOH solution (50 mL), and the solution extracted with CH_2Cl_2 (3 × 50 mL). The aqueous layer was acidified with 2 M aqueous HCl solution (30 mL) and then extracted with CH_2Cl_2 (4 × 50 mL). The combined extracts were washed with brine (100 mL), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford enantiopure (Sp) -1 (3.51 g, 14 mmol, 77%) based on a half amount of racemic 1 used) as a yellow oil. The enantiomeric excess of (S_p) -1 thus obtained was determined by HPLC analysis after (Sp) -1 was converted into the corresponding (S)-methyl ester with diazomethane (Daicel CHI-RALCEL OD-H; eluent, hexane/2-propanol $= 98:2$; flow rate, 1.0 mL/min; t_1 [(Rp)-isomer] = 36 min, t_2 [(Sp)-isomer] = 42 min; enantiomeric excess, >99%). $[\alpha]_D^{21} = +10.1$ (c 5.4, MeOH). IR (NaCl): m 3600–3300, 3056, 2982, 1627, 1093, 1031, 957, 779, 746, 677 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.34 (t, $J_{H-H} = 7$ Hz, 3H), 4.20 (dq, $J_{P-H} = 7$ Hz, $J_{H-H} = 7$ Hz, 2H), 6.14 (br, 1H), 7.51–7.62 (m, 2H), 7.83–7.89 (m, 4H), 8.49 (d, $J_{H-H} = 18$ Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 16.10, 62.77, 125.39, 126.81, 127.68, 128.15, 129.05, 129.66, 131.68, 132.05, 132.58, 134.73. ³¹P NMR (121 MHz, CDCl₃): δ80.15. After concentration of the mother liquor of the first crystallization in the above procedure, 1 M aqueous KOH solution (50 mL) was added to the residue, and the solution was extracted with CH_2Cl_2 (5 × 50 mL). The aqueous layer was acidified with 3 M aqueous HCl solution and then extracted with CH₂Cl₂ (4×50 mL). The combined extracts were dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure to afford (Rp) -enriched 1 (4.98 g, 19.7 mmol). To a solution of (Rp) -enriched 1 in ether (25 mL) was added (S) -PEA(2.39 g, 19.7 mmol), and the mixture was stirred at rt for 2 h. The deposited salt was collected by filtration using a membrane filter (T050A047A, ADVANTEC). The salt obtained was recrystallized once from acetone (100 mL) to afford the diastereopure salt (Rp) -1(S)-PEA (5.34 g, 14 mmol, 79% based on a half amount of racemic 1 used). To the diastereomeric salt thus obtained was added 1 M aqueous KOH solution (50 mL), and the solution extracted with CH_2Cl_2 (4 × 50 mL). The aqueous layer was acidified with 3 M aqueous HCl solution (110 mL) and then extracted with CH_2Cl_2 (5 × 60 mL). The combined extracts were dried over anhydrous Na2SO4, filtered, and then concentrated under reduced pressure to afford enantiopure (Rp) -1 (3.51 g, 14 mmol, 77% based on half the amount of racemic 1 used) as a yellow oil. $[\alpha]_D^{17} = -9.7$ (c 4.8, MeOH). The IR, ${}^{1}H$ NMR, ${}^{13}C$ NMR, and ${}^{31}P$ NMR were identical with those of (Sp) -1.

- 7. Crystal data of the less-soluble (Rp) -1(S)-3f salt: FW = 407.89, tetragonal, space group $P4_32_12$, $a = 13.725(0)$, $c =$ 47.049(11) \AA , $V = 8862.9(2) \AA^3$, $Z = 16$, $R = 0.0510$, $Rw =$ 0.0600 (CCDC 605590).
- 8. Crystal data of the less-soluble $(Sp)-1(R)-3a$ salt: FW = 373.45, orthorhombic, space group $P2_1$, $a = 12.542(9)$,
 $b = 6.309(3)$, $c = 13.222(13)$ Å, $\beta = 103.437(3)$, $V =$ $b = 6.309(3),$ $c = 13.222(13)$ Å, $\beta = 103.437(3),$ $V =$ $1017.58(13)$ \AA^3 , $Z = 2$, $R = 0.0430$, $Rw = 0.0510$ (CCDC 605588).