

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 17 (2006) 1617–1621

Tetrahedron: Asymmetry

Synthesis and chiral recognition ability of *O*-ethyl (2-naphthyl)phosphonothioic acid

Yuka Kobayashi, Jin Maeda and Kazuhiko Saigo*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received 8 May 2006; accepted 2 June 2006

Abstract—Enantiopure *O*-ethyl (2-naphthyl)phosphonothioic acid **1** was designed on the model of *O*-ethyl phenylphosphonothioic acid, based on the fact that the chiral recognition abilities of enantiopure mandelic acid and *cis*-1-aminoindan-2-ol were improved upon by replacing their phenyl/phenylene groups with naphthyl/naphthylene groups, respectively. Enantiopure **1** was easily obtained by the enantioseparation of racemic **1**, which was easily synthesized from commercially available 2-bromonaphthalene and diethoxyphosphonothioic chloride, with enantiopure 1-phenylethylamine. Enantiopure **1** showed an excellent chiral recognition ability for several 1-arylethylamine derivatives during the diastereomeric salt formation. The effect of the enlarged aromatic part of **1** is discussed on the basis of X-ray crystallographic analyses. © 2006 Elsevier Ltd. All rights reserved.

č

1. Introduction

Recently, we have reported the superior chiral recognition ability of O-alkyl phenylphosphonothioic acids during diastereomeric salt formation in the enantioseparations of various types of 1-phenylethylamine derivatives; a systematic study on the chiral recognition abilities of enantiopure O-methyl, O-ethyl, and O-propyl phenylphosphonothioic acids revealed that O-ethyl phenylphosphonothioic acid 2 was the most effective with a wide applicability.^{1,2} X-ray crystallographic studies showed that the excellent chiral recognition ability of 2 was caused by the formation of globular clusters in the less-soluble diastereomeric salts, of which the stacking was highly stabilized by the efficient CH/π interaction between the phenyl group in a cluster and the ethyl group in the neighboring cluster. The formation of the globular clusters in the less-soluble salt always led to excellent chiral recognition with 2, which resulted in >99-91% enantiomeric excesses (ee) for the amines incorporated in the less-soluble salts. These results suggest that the phenyl and O-alkyl groups in 2 play an important role in the realization of the high chiral recognition ability.

On the other hand, the chiral recognition abilities of enantiopure mandelic acid and 1-aminoindan-2-ol have been improved by changing the aromatic parts from the phenyl/phenylene groups to naphthyl/naphthylene groups, respectively (2-naphthylglycolic acid³ and 1-aminobenz[f]indan-2-ol⁴). The effect of the enlargement of the aromatic parts led to a dramatic improvement with respect to the chiral recognition abilities for *p*-substituted 1-phenylethylamine derivatives and *p*-substituted 2-phenylpropanoic acid derivatives with a long molecular length, respectively. Moreover, from a crystallographic point of view, the naphthyl and naphthylene groups commonly provided very effective CH/ π interaction sites to stabilize the less-soluble diastereomeric salts.

On the basis of these results, we designed *O*-ethyl (2-naphthyl)phosphonothioic acid **1**, which has a naphthyl group, for more effective CH/π interaction than the phenyl group in the prototype of *O*-ethyl phenyl-phosphonothioic acid **2**. Herein, we report the synthesis and chiral recognition ability of enantiopure **1** as well as the chiral recognition mechanism based on the X-ray crystallographic analyses of the corresponding less-soluble diastereomeric salts.

^{*} Corresponding author. Tel.: +81 3 5841 7266; fax: +81 3 5802 3348; e-mail: saigo@chiral.t.u-tokyo.ac.jp

^{0957-4166/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.06.002

2. Results and discussion

2.1. Synthesis of enantiopure *O*-ethyl (2-naphthyl)-phosphonothioic acid 1

Racemic *O*-ethyl (2-naphthyl)phosphonothioic acid **1** was synthesized from commercially available 2-bromonaphthalene and diethoxyphosphonothioic chloride, as shown in Scheme 1. 2-Bromonaphthalene was treated with 1 equiv of *n*-BuLi in ether and then allowed to react with diethoxyphosphonothioic chloride to give crude O,O'-diethyl (2-naphthyl)phosphonothioate, which was hydrolyzed with 8 M aqueous KOH solution to afford crude racemic **1**.⁵ Crude racemic **1** was purified upon crystallizing the salt with dicyclohexylamine from CHCl₃, followed by decomposition of the salt, to give chemically pure racemic **1** (78% total yield based on diethoxyphosphonothioic chloride used).⁵

Enantiopure 1 was obtained by the enantioseparation of racemic 1 with enantiopure 1-phenylethylamine (PEA) by stirring in ether. The diastereo-enriched salt of 1 with (*R*)-PEA was recrystallized once from acetone, and the diastereopure salt thus obtained was decomposed with 2 M aqueous HCl solution to give enantiopure (*Sp*)-1, the absolute configuration of which was determined on the basis of the X-ray crystallographic analysis of the diastereopure salt, in 77% total yield (based on a half amount of racemic 1 used).⁶ The antipode (*Rp*)-1 was obtained in 77% total yield by the enantioseparation of (*Rp*)-enriched 1, recovered from the mother liquor, with (*S*)-PEA, followed by similar recrystallization and decomposition.⁶

2.2. Chiral recognition ability of enantiopure *O*-ethyl (2-naphthyl)phosphonothioic acid 1

The enantioseparation of 1-phenylethylamine derivatives **3** with enantiopure *O*-ethyl (2-naphthyl)phosphonothioic acid **1** was carried out as follows: the ether solution of a 1-phenylethylamine derivative and 1 equiv of **1** was stirred for more than 4 h at room temperature. The crystalline powder deposited (diastereo-enriched salt) was collected by filtration, washed with hexane, and dried under reduced pressure. The salt was decomposed with 1 M aqueous KOH

solution to yield the enantio-enriched amine (Table 1). As can be seen from Table 1, 1 showed excellent chiral recognition ability in the enantioseparations of p-substituted 1-phenylethylamine derivatives (entries 4-8). The ees of the amines incorporated in the diastereo-enriched salts were in a high range of 86–99%, which are only a little less than those achieved with O-ethyl phenylphosphonothioic acid 2 (96->99%), ^{1,2} although the yields were rather low due to the high solubility of the diastereometric salts in ether, making control of the amount of ether difficult; subsequently, the efficiencies (the yield × the enantiomeric excess) were lowered considerably. It is noteworthy that the enantioseparations of *m*-methyl and *p*-nitro substituted amines with 1 (entries 3 and 8) were highly improved, compared with those with 2 (not crystallized and 16% ee/0.13 efficiency. respectively^{1,2}). These results indicate that 1 and 2 are complementary for the enantioseparation of 1-phenylethylamine derivatives.

There were two crystal shapes for the less-soluble diastereomeric salts of **3** with **1**; we observed a high correlation between the crystal shapes and the results of the enantioseparations. In the cases of the prism-type crystals (entries 5–7) high chiral recognitions were achieved (91–99% ee), while the chiral recognition ability varied in the range of 56–93% ee in the cases of needle-type crystals (entries 1, 3, 4 and 8). Since a similar correlation has been found in the enantioseparation with enantiopure *O*-alkyl phenylphosphonothioic acids,^{1,2} the correlation was considered to be a general phenomenon in the enantioseparation with enantiopure arylphosphonothioic acids.

2.3. Mechanism of the chiral recognition with enantiopure *O*-ethyl (2-naphthyl)phosphonothioic acid 1

In the next stage, in order to clarify the chiral recognition mechanism, we carried out an X-ray crystallographic analysis for one of the prism-type crystals (entry 6). Figure 1 shows the crystal structure of the less-soluble diastereomeric salt of (S)-1-(4-chlorophenyl)ethylamine **3f** with *O*-ethyl (*Rp*)-(2-naphthyl)phosphonothioic acid (*Rp*)-1.⁷ A molecular aggregate, which consists of four (*Rp*)-1 molecules and four (*S*)-**3f** molecules, was formed with a closed hydrogen-bonding network, which is almost the same as

Table 1. Enantioseparation of 1-phenylethylamine derivatives with enantiopure 1

		, H	NH ₂	3a: R = H 3b: R = <i>o</i> -Me 3c: R = <i>m</i> -Me 3d: R = <i>p</i> -Me	3e: R = <i>p</i> -F 3f: R = <i>p</i> -Cl 3g: R = <i>p</i> -Br 3h: R = <i>p</i> -NO ₂		
			3				
Entry	Amine	Amount of ether ^a (mL)	Yield ^b (%)	ee ^c (%)	Absolute configuration ^d	Efficiency ^e	Crystal shape ^f
1 ^g	3a	4.0	100	56	R	0.56	Needle
2 ^h	3b	0.7	n.c. ⁱ	_	_		_
3 ^h	3c	0.8	61	93	S	0.56	Needle
4 ^h	3d	4.0	63	86	S	0.54	Needle
5 ^h	3e	1.0	42	91	S	0.38	Prism
6 ^h	3f	0.8	58	99	S	0.57	Prism
7 ^h	3g	0.8	67	96	S	0.64	Prism
8 ^h	3h	0.8	75	90	n.d. ^j	0.68	Needle

^a Amount of the solvent normalized to a 1 mmol-scale.

^b Yield of the crystallized diastereomeric salt based on a half amount of the racemic amine.

^c Enantiomeric excess (ee) of the liberated amine, which was determined by a HPLC analysis.

^d Absolute configuration of the major enantiomer, which was determined by X-ray crystallographic analysis and/or deduced on the basis of the elution order in the HPLC analysis.

^eEfficiency is the product of the yield and the ee.

^fCrystal shape of less-soluble salt.

 $^{g}(Sp)$ -1 was used.

h(Rp)-1 was used.

ⁱ Not crystallized.

^jNot determined.

that in the globular cluster formed in the salt of (R)-**3f** with *O*-ethyl (Sp)-phenylphosphonothioic acid (Sp)-**2**.^{1,2} However, the shape of the aggregate of the (Rp)-**1**.(S)-**3f** salt is fairly different from that of the globular cluster of the (Sp)-**2**.(R)-**3f** salt. The top view of the aggregate of the (Rp)-**1**.(S)-**3f** salt reveals that the naphthyl group of **1** is located at the outer part of the aggregate. As a result, the CH(sp²)/ π interactions between (Rp)-**1**.(S)-**3f** salt is less in number than those in the globular cluster of the (Sp)-**2**.(R)-**3f** salt, contrary to our expectation. Moreover, the packing of the aggregates is not sufficient, because the naphthyl groups stick out from the aggregates to form a cavity between the aggregates (Fig. 1c); the density of the

(Rp)-1·(S)-3f salt is smaller than that of the (Sp)-2·(R)-3f salt (1.223 and 1.446 g/cm³, respectively). Thus, the (Rp)-1·(S)-3f salt has some disadvantages, compared with the (Sp)-2·(R)-3f salt, with regards to effective interaction and close packing. However, (Rp)-1 showed a high chiral recognition ability, when the resultant less-soluble diastereomeric salts were prism-type crystals. These results indicate that the formation of an aggregate/cluster, consisting of four phosphonothioic acid molecules and four 1-phenylethylamine derivative molecules, is very important for achieving efficient chiral recognition.

In order to clarify the chiral recognition mechanism through the formation of needle-type crystals, we tried to

Figure 1. Crystal structure of the less-soluble (Rp)-1-(S)-3f salt; (a) side view of the aggregate, (b) top view of the aggregate, and (c) packing mode of the aggregates. The pale blue circles indicate the closed hydrogen-bonding networks. The dotted lines and arrows show hydrogen bonds and CH/ π interactions, respectively. The bond distances are in angstrom.

Figure 2. Crystal structure of the less-soluble (*Sp*)-1·(*R*)-**3a** salt; (a) columnar hydrogen-bonding network and (b) packing mode of the columns with CH/π interactions. The pale blue circles indicate the closed hydrogen-bonding networks. The dotted lines, black arrow, and green arrow show hydrogen bonds, inter-columnar $CH(sp^2)/\pi$ interactions, and intra-columnar $CH(sp^2)/\pi$ interactions, respectively. The bond distances are in angstroms.

prepare single crystals of the less-soluble diastereomeric salts (Sp)-1·(R)-3a, (Sp)-1·(R)-3c, and (Sp)-1·(R)-3h for Xray crystallographic analyses. Among them, the single crystal of the $(Sp)-1 \cdot (R)-3a$ salt was solely obtained, and its crystal structure could be solved (Fig. 2).8 There exists a columnar hydrogen-bonding network, consisting of the phosphonothioate anions and the ammonium cations, as was observed in the needle-type less-soluble diastereomeric salts with O-alkyl phenylphosphonothioic acids.^{1,2} The top view of the column indicates that intra-columnar $CH(sp^2)/$ π interaction reinforces the one-dimensional hydrogenbonding column. Furthermore, the packing of the columns is sufficiently stabilized by four kinds of inter-columnar $CH(sp^2)/\pi$ interactions. From a crystallographic point of view, the *m*- and *p*-substituted phenvlethylamines 3c and **3h** would be able to make a similar conformation, because the substituents at the *m*- and *p*-positions have no serious influence on the stability of the crystals owing to relatively low occupancy for the spaces around the hydrogen-bonding network and between the columns. This X-ray crystallographic analysis indicates that the enlargement of the aromatic part in O-alkyl arylphosphonothioic acids is favorable for the chiral recognition via the formation of a columnar hydrogen-bonding network, as was found in the chiral recognition with enantiopure 2-naphthylglycolic acid³ and 1-aminobenz[f]indan-2-ol.⁴

3. Conclusion

Enantiopure *O*-ethyl (2-naphthyl)phosphonothioic acid **1** was prepared from racemic **1**, which was synthesized from 2-bromonaphthalene and diethoxyphosphonothioic chloride, through enantioseparation with enantiopure 1-phenylethylamine. Enantiopure **1** showed an excellent chiral recognition ability for racemic 1-phenylethylamine derivatives; the ees were 91-99% in the cases of prism-type less-soluble diastereomeric salts and were 56-93% in the cases of needle-type less-soluble salts. The X-ray crystallographic analyses revealed that the enlarged aromatic part in **1**, compared with that in *O*-ethyl phenylphosphonothioic acid **2**,

played a significant role in the chiral recognition via the formation of a columnar hydrogen-bonding network to stabilize the packing of the columns with efficient CH/ π interactions, but was not so effective for the stabilization of the aggregates consisting of four (2-naphthyl)phosphonothioic acid molecules and four 1-phenylethylamine derivative molecules.

References

- 1. Kobayashi, Y.; Morisawa, F.; Saigo, K. Org. Lett. 2004, 23, 4227.
- Kobayashi, Y.; Morisawa, F.; Saigo, K. J. Org. Chem. 2005, 71, 606–615.
- Kinbara, K.; Harada, Y.; Saigo, K. J. Chem. Soc., Perkin Trans. 2 2000, 1339.
- Kobayashi, Y.; Kurasawa, T.; Kinbara, K.; Saigo, K. J. Org. Chem. 2004, 69, 7436.
- 5. A typical procedure: To a solution of 2-bromonaphthalene (16.2 g, 78 mmol) in dry ether (120 mL) was added dropwise 1.6 M butyllithium in hexane (49.4 mL, 78 mmol) at -78 °C under an argon atmosphere, and the mixture stirred at 0 °C for Diethoxyphosphonothioic 20 min. chloride (9.41 mL. 60 mmol) in dry ether (50 mL) was then added dropwise to the mixture at -78 °C. The reaction mixture was stirred at rt for 1.5 h and then cooled with an ice bath, after which H₂O (30 mL) was slowly added to the mixture. After removal of the solvent under reduced pressure, 1 M aqueous HCl solution (100 mL) was added, and the aqueous layer extracted with ether $(8 \times 80 \text{ mL})$. Then the combined extracts were successively washed with 1 M aqueous HCl solution (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give crude O,O-diethyl 2-naphthylphosphonothioate. A solution of crude O,O-diethyl 2-naphthylphosphonothioate in a mixture of 8 M aqueous KOH solution (120 mL) and ethanol (120 mL) was refluxed for 12 h. After removal of ethanol under reduced pressure, 12 M aqueous HCl solution (60 mL) was added to the residue. The resultant solution was extracted with CH_2Cl_2 (1 × 200 mL, and then 3×100 mL). The aqueous solution was acidified with 12 M aqueous HCl solution (50 mL) and extracted with dichloromethane $(9 \times 100 \text{ mL})$. The combined extracts were washed with brine (150 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give crude

racemic *O*-ethyl (2-naphthyl)phosphonothioic acid (13.8 g, 55 mmol) as a colorless oil. Crude *O*-ethyl (2-naphthyl)phosphonothioic acid (13.8 g, 55 mmol) was purified via salt crystallization with dicyclohexylamine (10.0 mL, 55 mmol) from CHCl₃ (120 mL). Decomposition of the corresponding salt by 3 M aqueous HCl solution (150 mL), followed by extraction with CH₂Cl₂ (4×80 mL) and concentration under reduced pressure, gave chemically pure racemic 1 (11.84 g, 47 mmol) in 78% overall yield (on the basis of diethoxyphonothioic chloride used).

6. A typical procedure: To a solution of racemic 1 (9.08 g, 36 mmol) in ether (50 mL) was added (R)-1-phenylethylamine (PEA; 4.36 g, 36 mmol), and the mixture stirred at rt for 4 h. The deposited salt was collected by filtration using a membrane filter (T050A047A, ADVANTEC). The salt was recrystallized once from acetone (90 mL) to afford the diastereopure salt (Sp)-1·(R)-PEA (5.30 g, 14 mmol, 79% based on a half amount of racemic 1 used). To the diastereomeric salt thus obtained was added 1 M aqueous KOH solution (50 mL), and the solution extracted with CH_2Cl_2 (3 × 50 mL). The aqueous laver was acidified with 2 M aqueous HCl solution (30 mL) and then extracted with CH_2Cl_2 (4 × 50 mL). The combined extracts were washed with brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford enantiopure (Sp)-1 (3.51 g, 14 mmol, 77%) based on a half amount of racemic 1 used) as a yellow oil. The enantiomeric excess of (Sp)-1 thus obtained was determined by HPLC analysis after (Sp)-1 was converted into the corresponding (S)-methyl ester with diazomethane (Daicel CHI-RALCEL OD-H; eluent, hexane/2-propanol = 98:2; flow rate, 1.0 mL/min; t_1 [(*Rp*)-isomer] = 36 min, t_2 [(*Sp*)-isomer] = 42 min; enantiomeric excess, >99%). $[\alpha]_D^{21} = +10.1 (c 5.4, MeOH)$. IR (NaCl): v 3600–3300, 3056, 2982, 1627, 1093, 1031, 957, 779, 746, 677 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.34 (t, $J_{H-H} = 7$ Hz, 3H), 4.20 (dq, $J_{P-H} = 7$ Hz, $J_{H-H} = 7$ Hz, 2H), 6.14 (br, 1H), 7.51–7.62 (m, 2H), 7.83–7.89 (m, 4H), 8.49 (d, $J_{H-H} = 18$ Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 16.10,

62.77, 125.39, 126.81, 127.68, 128.15, 129.05, 129.66, 131.68, 132.05, 132.58, 134.73. ³¹P NMR (121 MHz, CDCl₃): δ80.15. After concentration of the mother liquor of the first crystallization in the above procedure, 1 M aqueous KOH solution (50 mL) was added to the residue, and the solution was extracted with CH_2Cl_2 (5 × 50 mL). The aqueous layer was acidified with 3 M aqueous HCl solution and then extracted with CH_2Cl_2 (4 × 50 mL). The combined extracts were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to afford (*Rp*)-enriched 1 (4.98 g, 19.7 mmol). To a solution of (Rp)-enriched 1 in ether (25 mL) was added (S)-PEA(2.39 g, 19.7 mmol), and the mixture was stirred at rt for 2 h. The deposited salt was collected by filtration using a membrane filter (T050A047A, ADVANTEC). The salt obtained was recrystallized once from acetone (100 mL) to afford the diastereopure salt (Rp)-1·(S)-PEA (5.34 g, 14 mmol, 79% based on a half amount of racemic 1 used). To the diastereomeric salt thus obtained was added 1 M aqueous KOH solution (50 mL), and the solution extracted with CH_2Cl_2 (4 × 50 mL). The aqueous layer was acidified with 3 M aqueous HCl solution (110 mL) and then extracted with CH_2Cl_2 (5 × 60 mL). The combined extracts were dried over anhydrous Na2SO4, filtered, and then concentrated under reduced pressure to afford enantiopure (Rp)-1 (3.51 g, 14 mmol, 77% based on half the amount of racemic **1** used) as a yellow oil. $[\alpha]_D^{17} = -9.7$ (*c* 4.8, MeOH). The IR, ¹H NMR, ¹³C NMR, and ³¹P NMR were identical with those of (Sp)-1.

- 7. Crystal data of the less-soluble (Rp)-1·(S)-3f salt: FW = 407.89, tetragonal, space group $P4_{3}2_{1}2$, a = 13.725(0), c = 47.049(11) Å, V = 8862.9(2) Å³, Z = 16, R = 0.0510, Rw = 0.0600 (CCDC 605590).
- 8. Crystal data of the less-soluble (Sp)-1·(R)-3a salt: FW = 373.45, orthorhombic, space group $P2_1$, a = 12.542(9), b = 6.309(3), c = 13.222(13) Å, $\beta = 103.437(3)$, V =1017.58(13) Å³, Z = 2, R = 0.0430, Rw = 0.0510 (CCDC 605588).